skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pial, Mohammad_Mohtasim Hamid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electromagnetic compatibility (EMC) is a key requirement for electronic system design. Meeting the EMC regulations becomes more challenging as the component density increases and operation frequencies spread to multiple bands. Coupling between transmission lines is a common manifestation of electromagnetic interference (EMI). In this work, we present a novel method to suppress the noise between two transmission lines by using a metamaterial (MTM) structure. This MTM design helps to mitigate the coupling between the two transmission lines where one acts as an aggressor and the other as the victim. This approach helps miniaturize the solutions such as shielding or filtering to mitigate the noise. MTM provides good protection in terms of EMI isolation, is inexpensive, and has a smaller footprint compared to traditional EMC solutions. The second part of this article studies the impact of the relative permittivity (ε r ) of the MTM structure. Changing the ε r modifies the transmission and absorption bands. Thus, that can help in modulating the operation of the MTM through appropriate designs. The MTM designs used in this work enhanced the isolation between the victim and aggressor by 1–13.5 dB across 1–5 GHz. 
    more » « less